Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 21(1): 8, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38409078

RESUMO

BACKGROUND: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory and systemic health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of occupational-level silica and ambient-level DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. RESULTS: The findings highlight the distinct effects of silica and diesel exhaust particles (DEP) on lung injury, inflammation, and autoantibody formation in C57BL/6J and NOD/ShiLtJ mice. Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside mild fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Moreover, antinuclear antibodies correlated with extent of lung inflammation in NOD/ShiLTJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. However, aside from contributing to airway hyperreactivity specifically in NOD/ShiLtJ mice, the ambient-level DEP did not significantly amplify the effects induced by silica. There was no evidence of synergistic or additive interaction between these specific doses of silica and DEP in inducing lung damage or inflammation in either of the mouse strains. CONCLUSION: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of ambient-level DEP on these silica-induced effects was minimal.


Assuntos
Asma , Lesão Pulmonar , Camundongos , Animais , Emissões de Veículos/toxicidade , Lesão Pulmonar/patologia , Dióxido de Silício/toxicidade , Autoanticorpos/farmacologia , Anticorpos Antinucleares/farmacologia , Microtomografia por Raio-X , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Pulmão , Citocinas/genética , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Material Particulado/toxicidade
2.
Res Sq ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37886437

RESUMO

Background: Inhalation of airborne particulate matter, such as silica and diesel exhaust particles, poses serious long-term respiratory health risks. Silica exposure can lead to silicosis and systemic autoimmune diseases, while DEP exposure is linked to asthma and cancer. Combined exposure to silica and DEP, common in mining, may have more severe effects. This study investigates the separate and combined effects of silica and DEP on lung injury, inflammation, and autoantibody formation in two genetically distinct mouse strains, thereby aiming at understanding the interplay between genetic susceptibility, particulate exposure, and disease outcomes. Silica and diesel exhaust particles were administered to mice via oropharyngeal aspiration. Assessments of lung injury and host response included in vivo lung micro-computed tomography, lung function tests, bronchoalveolar lavage fluid analysis including inflammatory cytokines and antinuclear antibodies, and histopathology with particle colocalization. Results: Silica exposure elicited a well-established inflammatory response marked by inflammatory infiltrates, release of cytokines, and chemokines, alongside limited fibrosis, indicated by collagen deposition in the lungs of both C57BL/6J and NOD/ShilLtJ mice. Notably, these strains exhibited divergent responses in terms of respiratory function and lung volumes, as assessed through micro-computed tomography. Additionally, silica exposure induced airway hyperreactivity and elevated antinuclear antibody levels in bronchoalveolar lavage fluid, particularly prominent in NOD/ShiLtJ mice. Lung tissue analysis revealed DEP loaded macrophages and co-localization of silica and DEP particles. Conclusion: Mouse strain variations exerted a substantial influence on the development of silica induced lung alterations. Furthermore, the additional impact of diesel exhaust particles on these silica-induced effects was minimal.

3.
Regul Toxicol Pharmacol ; 144: 105488, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37657743

RESUMO

Electronic cigarette is often promoted and perceived as an 'healthy' alternative compared to conventional cigarettes. However, growing body of evidence indicate the possible adverse health effect associated with e-cigarette. Here we reviewed the literature with a focus on metal exposure in relation to e-cigarette use and related toxicity endpoints. Twenty-nine studies were identified for full text screening after applying the screening criteria of which 5 in vitro studies and 11 epidemiological studies were included for data extraction. Cr, Cu, Ni, Sn are the most found metal in all studies. In vitro, metal from e-cigarette (liquid or aerosols) induced cytotoxicity, oxidative stress, genotoxicity and pro-inflammatory responses. It was observed that the presence of nicotine can influence metal-induced in vitro toxicity. Based on epidemiological studies, the metal burden in e-cigarette users showed to be elevated in different populations (including e.g. NHANES). However, most often such studies were limited by the missing user characteristics, and information of other potential sources of metal exposure. In general, metals from e-cigarette use can be associated with toxicity endpoints but to uncover the metal related hazard of e-cigarette in users, more detailed data on metals in vapors and e-liquids; user habits and user demographics are needed.

4.
J Hazard Mater ; 394: 122569, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240902

RESUMO

Carbon nanotubes (CNTs) except MWCNT-7 have been classified as Group 3 ["Not classifiable as to its carcinogenicity to humans"] by the IARC. Despite considerable mechanistic evidence in vitro/in vivo, the classification highlights a general lack of data, especially among humans. In our previous study, we reported epigenetic changes in the MWCNT exposed workers. Here, we evaluated whether MWCNT can also cause alterations in aging related features including relative telomere length (TL) and/or mitochondrial copy number (mtDNAcn). Relative TL and mtDNAcn were measured on extracted DNA from peripheral blood from MWCNT exposed workers (N = 24) and non-exposed controls (N = 43) using a qPCR method. A higher mtDNAcn and longer TL were observed in MWCNT exposed workers when compared to controls. Independent of age, sex, smoking behavior, alcohol consumption and BMI, MWCNT-exposure was associated with an 18.30 % increase in blood TL (95 % CI: 7.15-30.62 %; p = 0.001) and 35.21 % increase in mtDNAcn (95 % CI: 19.12-53.46 %). Our results suggest that exposure to MWCNT can induce an increase in the mtDNAcn and TL; however, the mechanistic basis or consequence of such change requires further experimental studies.


Assuntos
DNA Mitocondrial , Nanotubos de Carbono , Telômero , Local de Trabalho , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Humanos , Nanotubos de Carbono/toxicidade , Telômero/genética
5.
Am J Ind Med ; 62(10): 908-913, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31347732

RESUMO

BACKGROUND: Associations between sarcoidosis or sarcoid-like granulomatous lung disease and exposure to silica and other inorganic agents have been suggested in several studies. CASES: We describe granulomatous lung disease in two workers of a small production unit making metal-halide lamps. Initially, both were diagnosed with sarcoidosis. However, in both men, birefringent particles were observed in the lung or mediastinal lymph node biopsies. Clipping of glass tubes led to moderate exposure to dust, consisting mainly of amorphous fused silica, with some cristobalite. After removal from exposure, both subjects improved clinically, radiologically, and functionally. CONCLUSION: The present cases support the hypothesis that silica might be a trigger for sarcoid-like granulomatous lung disease. Sarcoidosis should be considered a diagnosis of exclusion and clinicians should carefully collect occupational and environmental exposure histories to identify workplace triggers.


Assuntos
Granuloma do Sistema Respiratório/etiologia , Pneumopatias/etiologia , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Sarcoidose Pulmonar/etiologia , Adulto , Poeira/análise , Humanos , Pulmão/química , Pulmão/patologia , Masculino , Indústria Manufatureira , Exposição Ocupacional/análise , Dióxido de Silício/análise
6.
Part Fibre Toxicol ; 15(1): 11, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426343

RESUMO

BACKGROUND: Subtle DNA methylation alterations mediated by carbon nanotubes (CNTs) exposure might contribute to pathogenesis and disease susceptibility. It is known that both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) interact with nucleus. Such, nuclear-CNT interaction may affect the DNA methylation effects. In order to understand the epigenetic toxicity, in particular DNA methylation alterations, of SWCNTs and short MWCNTs, we performed global/genome-wide, gene-specific DNA methylation and RNA-expression analyses after exposing human bronchial epithelial cells (16HBE14o- cell line). In addition, the presence of CNTs on/in the cell nucleus was evaluated in a label-free way using femtosecond pulsed laser microscopy. RESULTS: Generally, a higher number of SWCNTs, compared to MWCNTs, was deposited at both the cellular and nuclear level after exposure. Nonetheless, both CNT types were in physical contact with the nuclei. While particle type dependency was noticed for the identified genome-wide and gene-specific alterations, no global DNA methylation alteration on 5-methylcytosine (5-mC) sites was observed for both CNTs. After exposure to MWCNTs, 2398 genes were hypomethylated (at gene promoters), and after exposure to SWCNTs, 589 CpG sites (located on 501 genes) were either hypo- (N = 493 CpG sites) or hypermethylated (N = 96 CpG sites). Cells exposed to MWCNTs exhibited a better correlation between gene promoter methylation and gene expression alterations. Differentially methylated and expressed genes induced changes (MWCNTs > SWCNTs) at different cellular pathways, such as p53 signalling, DNA damage repair and cell cycle. On the other hand, SWCNT exposure showed hypermethylation on functionally important genes, such as SKI proto-oncogene (SKI), glutathione S-transferase pi 1 (GTSP1) and shroom family member 2 (SHROOM2) and neurofibromatosis type I (NF1), which the latter is both hypermethylated and downregulated. CONCLUSION: After exposure to both types of CNTs, epigenetic alterations may contribute to toxic or repair response. Moreover, our results suggest that the observed differences in the epigenetic response depend on particle type and differential CNT-nucleus interactions.


Assuntos
Brônquios/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Brônquios/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Nanotubos de Carbono/química , Tamanho da Partícula , Proto-Oncogene Mas , Relação Estrutura-Atividade , Propriedades de Superfície
7.
Nanotoxicology ; 11(9-10): 1195-1210, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29191063

RESUMO

This study was designed to assess the epigenetic alterations in blood cells, induced by occupational exposure to multi-wall carbon nanotubes (MWCNT). The study population comprised of MWCNT-exposed workers (n=24) and unexposed controls (n=43) from the same workplace. We measured global DNA methylation/hydroxymethylation levels on the 5th cytosine residues using a validated liquid chromatography tandem-mass spectrometry (LC-MS/MS) method. Sequence-specific methylation of LINE1 retrotransposable element 1 (L1RE1) elements, and promoter regions of functionally important genes associated with epigenetic regulation [DNA methyltransferase-1 (DNMT1) and histone deacetylase 4 (HDAC4)], DNA damage/repair and cell cycle pathways [nuclear protein, coactivator of histone transcription/ATM serine/threonine kinase (NPAT/ATM)], and a potential transforming growth factor beta (TGF-ß) repressor [SKI proto-oncogene (SKI)] were studied using bisulfite pyrosequencing. Analysis of global DNA methylation levels and hydroxymethylation did not reveal significant difference between the MWCNT-exposed and control groups. No significant changes in Cytosine-phosphate-Guanine (CpG) site methylation were observed for the LINE1 (L1RE1) elements. Further analysis of gene-specific DNA methylation showed a significant change in methylation for DNMT1, ATM, SKI, and HDAC4 promoter CpGs in MWCNT-exposed workers. Since DNA methylation plays an important role in silencing/regulation of the genes, and many of these genes have been associated with occupational and smoking-induced diseases and cancer (risk), aberrant methylation of these genes might have a potential effect in MWCNT-exposed workers.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Exposição Ocupacional/efeitos adversos , Adulto , Estudos Transversais , DNA/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA/genética , Epigênese Genética/genética , Feminino , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Masculino , Exposição Ocupacional/análise , Proto-Oncogene Mas , Fator de Crescimento Transformador beta/genética , Local de Trabalho/normas
8.
Nanotoxicology ; 10(5): 567-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26525175

RESUMO

Nano-silicon dioxide (SiO2) is used nowadays in several biomedical applications such as drug delivery and cancer therapy, and is produced on an industrial scale as additive to paints and coatings, cosmetics and food. Data regarding the long-term biokinetics of SiO2 engineered nanoparticles (ENPs) is lacking. In this study, the whole-body biodistribution of SiO2 core-shell ENPs containing a paramagnetic core of Fe3O4 was investigated after a single exposure via intravenous injection or intratracheal instillation in mice. The distribution and accumulation in different organs was evaluated for a period of 84 days using several techniques, including magnetic resonance imaging, inductively coupled plasma mass spectrometry, X-ray fluorescence and X-ray absorption near edge structure spectroscopy. We demonstrated that intravenously administered SiO2 ENPs mainly accumulate in the liver, and are retained in this tissue for over 84 days. After intratracheal instillation, an almost complete particle clearance from the lung was seen after 84 days with distribution to spleen and kidney. Furthermore, we have strong evidence that the ENPs retain their original core-shell structure during the whole observation period. This work gives an insight into the whole-body biodistribution of SiO2 ENPs and will provide guidance for further toxicity studies.


Assuntos
Óxido Ferroso-Férrico/farmacocinética , Pulmão/metabolismo , Nanopartículas , Dióxido de Silício/farmacocinética , Administração por Inalação , Animais , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/química , Humanos , Injeções Intravenosas , Instilação de Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Nanopartículas/química , Especificidade de Órgãos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/sangue , Dióxido de Silício/química , Espectrometria por Raios X , Propriedades de Superfície , Distribuição Tecidual , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA